Category: silicon

Visualizing the Abundance of Elements in the Earth’s Crust

This post is by Nicholas LePan from Visual Capitalist

Subscribe to the Elements free mailing list for more like this

Visualizing the Abundance of Elements in the Earth’s Crust

Visualizing the Abundance of Elements in the Earth’s Crust

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Elements in the Earth’s crust provide all the basic building blocks for mankind.

But even though the crust is the source of everything we find, mine, refine, and build, it really is just scratching the surface of our planet.

After all, the innermost layer of the Earth, the core, represents 15% of the planet’s volume, whereas the mantle occupies 84%. Representing the remaining 1% is the crust, a thin layer that ranges in depth from approximately 5-70 km (~3-44 miles).

This infographic takes a look at what elements make up this 1%, based on data from WorldAtlas.

Earth’s Crust Elements

The crust is a rigid surface containing both the oceans and landmasses. Most elements are found in only trace amounts within the Earth’s crust, but several are abundant.

The Earth’s crust comprises about 95% igneous and metamorphic rocks, 4% shale, 0.75% sandstone, and 0.25% limestone.

Oxygen, silicon, aluminum, and iron account for 88.1% of the mass of the Earth’s crust, while another 90 elements make up the remaining 11.9%.

RankElement% of Earth's Crust
1Oxygen (O)46.1%
2Silicon (Si)28.2%
3Aluminum (Al)8.2%
4Iron (Fe)5.6%
5Calcium (Ca)4.1%
6Sodium (Na)2.3%
7 (Read more...)

OneNav locates $21M from GV to map our transition to the next generation of GPS

GPS is one of those science fiction technologies whose use is effortless for the end user and endlessly challenging for the engineers who design it. It’s now at the heart of modern life: everything from Amazon package deliveries to our cars and trucks to our walks through national parks are centered around a pin on a map that monitors us down to a few meters.

Yet, GPS technology is decades old, and it’s going through a much-needed modernization. The U.S., Europe, China, Japan and others have been installing a new generation of GNSS satellites (GNSS is the generic name for GPS, which is the specific name for the U.S. system) that will offer stronger signals in what is known as the L5 band (1176 MHz). That means more accurate map pinpoints compared to the original generation L1 band satellites, particularly in areas where line-of-sight can be obscured like urban areas. L5 was “designed to meet demanding requirements for safety-of-life transportation and other high-performance applications,” as the U.S. government describes it.

It’s one thing to put satellites into orbit (that’s the easy part!), and another to build power-efficient chips that can scan for these signals and triangulate a coordinate (that’s the hard part!). So far, chipmakers have focused on creating hybrid chips that pull from the L1 and L5 bands simultaneously. For example, Broadcom recently announced the second-generation of its hybrid chip.

OneNav has a totally different opinion on product design, and it placed it right in its name. (Read more...)