Category: nuclear reactors

The Science of Nuclear Weapons, Visualized

This post is by Mark Belan from Visual Capitalist

this infographic visualizes the science of how nuclear weapons work, including the processes of fission and fusion

Visualized: How Nuclear Weapons Work

In 1945, the world’s first-ever nuclear weapon was detonated at the Trinity test site in New Mexico, United States, marking the beginning of the Atomic Age.

Since then, the global nuclear stockpile has multiplied, and when geopolitical tensions rise, the idea of a nuclear apocalypse understandably causes widespread concern.

But despite their catastrophically large effects, the science of how nuclear weapons work is atomically small.

The Atomic Science of Nuclear Weapons

All matter is composed of atoms, which host different combinations of three particles—protons, electrons, and neutrons. Nuclear weapons work by capitalizing on the interactions of protons and neutrons to create an explosive chain reaction.

At the center of every atom is a core called the nucleus, which is composed of closely-bound protons and neutrons. While the number of protons is unique to each element in the periodic table, the number of neutrons can vary. As a result, there are multiple “species” of some elements, known as isotopes.

For example, here are some isotopes of uranium:

  • Uranium-238: 92 protons, 146 neutrons
  • Uranium-235: 92 protons, 143 neutrons
  • Uranium-234: 92 protons, 142 neutrons

These isotopes can be stable or unstable. Stable isotopes have a relatively static or unchanging number of neutrons. But when a chemical element has too many neutrons, it becomes unstable or fissile.

When fissile isotopes attempt to become stable, they shed excess neutrons and energy. This energy is where nuclear weapons get their explosivity from.

There are two (Read more...)

Smashing Atoms: The History of Uranium and Nuclear Power

The following content is sponsored by the Sprott Physical Uranium Trust

uranium and nuclear power infographic

The History of Uranium and Nuclear Power

Uranium has been around for millennia, but we only recently began to understand its unique properties.

Today, the radioactive metal fuels hundreds of nuclear reactors, enabling carbon-free energy generation across the globe. But how did uranium and nuclear power come to be?

The above infographic from the Sprott Physical Uranium Trust outlines the history of nuclear energy and highlights the role of uranium in producing clean energy.

From Discovery to Fission: Uncovering Uranium

Just like all matter, the history of uranium and nuclear energy can be traced back to the atom.

Martin Klaproth, a German chemist, first discovered uranium in 1789 by extracting it from a mineral called “pitchblende”. He named uranium after the then newly discovered planet, Uranus. But the history of nuclear power really began in 1895 when German engineer Wilhelm Röntgen discovered X-rays and radiation, kicking off a series of experiments and discoveries—including that of radioactivity.

In 1905, Albert Einstein set the stage for nuclear power with his famous theory relating mass and energy, E = mc2. Roughly 35 years later, Otto Hahn and Fritz Strassman confirmed his theory by firing neutrons into uranium atoms, which yielded elements lighter than uranium. According to Einstein’s theory, the mass lost during the reaction changed into energy. This demonstrated that fission—the splitting of one atom into lighter elements—had occurred.

“Nuclear energy is incomparably greater than the molecular energy which we (Read more...)