Charted: The Exponential Growth in AI Computation


This post is by Pallavi Rao from Visual Capitalist


Click to view this graphic in a higher-resolution.

A time series chart showing the creation of machine learning systems on the x-axis and the amount of AI computation they used on the y-axis measured in FLOPs.

Charted: The Exponential Growth in AI Computation

Electronic computers had barely been around for a decade in the 1940s, before experiments with AI began. Now we have AI models that can write poetry and generate images from textual prompts. But what’s led to such exponential growth in such a short time?

This chart from Our World in Data tracks the history of AI through the amount of computation power used to train an AI model, using data from Epoch AI.

The Three Eras of AI Computation

In the 1950s, American mathematician Claude Shannon trained a robotic mouse called Theseus to navigate a maze and remember its course—the first apparent artificial learning of any kind.

Theseus was built on 40 floating point operations (FLOPs), a unit of measurement used to count the number of basic arithmetic operations (addition, subtraction, multiplication, or division) that a computer or processor can perform in one second.

ℹ FLOPs are often used as a metric to measure the computational performance of computer hardware. The higher the FLOP count, the higher computation, the more powerful the system.

Computation power, availability of training data, and algorithms are the three main ingredients to AI progress. And for the first few decades of AI advances, compute, which is the computational power needed to train an AI model, grew according to Moore’s Law.

PeriodEraCompute Doubling
1950–2010Pre-Deep Learning18–24 months
2010–2016Deep Learning5–7 months
2016–2022Large-scale models11 (Read more…)